Tutorial: SOMA Objects

In this notebook, we’ll go through the various objects available as part of the SOMA API. The dataset used is from Peripheral Blood Mononuclear Cells (PBMC), which is freely available from 10X Genomics.

We’ll start by importing tiledbsoma.

[1]:
import tiledbsoma

Experiment

An Experiment is a class that represents a single-cell experiment. It always contains two objects: 1. obs: A DataFrame with primary annotations on the observation axis. 2. ms: A Collection of measurements.

Let’s unpack and open the experiment:

[2]:
import tarfile
import tempfile

dense_uri = tempfile.mktemp()
with tarfile.open("data/pbmc3k-dense.tgz") as handle:
    handle.extractall(dense_uri)
experiment = tiledbsoma.Experiment.open(dense_uri)

Each object within the experiment can be opened like this:

[3]:
experiment.ms
[3]:
<Collection 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms' (open for 'r') (2 items)
    'RNA': 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/RNA' (unopened)
    'raw': 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/raw' (unopened)>
[4]:
experiment.obs
[4]:
<DataFrame 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/obs' (open for 'r')>

Note that by default an experiment is opened lazily, i.e. only the minimal requested objects are opened.

Also, opening an object doesn’t mean that it will entirely be fetched in memory. It only returns a pointer to the object on disk.

DataFrame

A DataFrame is a multi-column table with a user-defined schema. The schema is expressed as an Arrow Schema, and defines the column names and value types.

As an example, let’s take a look at obs, which is represented as a SOMA DataFrame.

We can inspect the schema using .schema:

[5]:
obs = experiment.obs

The domain is the bounds within which data can be read or written – currently, soma_joinids from 0 to 2637, inclusive. This can be resized later, as we’ll see in the notebook that explains TileDB-SOMA’s append mode.

[8]:
obs.domain
[8]:
((0, 2637),)
[9]:
obs.schema
[9]:
soma_joinid: int64 not null
obs_id: large_string
n_genes: int64
percent_mito: float
n_counts: float
louvain: dictionary<values=string, indices=int32, ordered=0>

Note that soma_joinid is a field that exists in each DataFrame and acts as a join key for other objects, such as SparseNDArray (more on this later).

When a DataFrame is accessed, only metadata is retrieved, not actual data. This is important since a DataFrame can be very large and might not fit in memory.

To materialize the dataframe (or a subset) in memory, we call df.read().

If the dataframe is small, we can convert it to an in-memory Pandas object like this:

[10]:
obs.read().concat().to_pandas()
[10]:
soma_joinid obs_id n_genes percent_mito n_counts louvain
0 0 AAACATACAACCAC-1 781 0.030178 2419.0 CD4 T cells
1 1 AAACATTGAGCTAC-1 1352 0.037936 4903.0 B cells
2 2 AAACATTGATCAGC-1 1131 0.008897 3147.0 CD4 T cells
3 3 AAACCGTGCTTCCG-1 960 0.017431 2639.0 CD14+ Monocytes
4 4 AAACCGTGTATGCG-1 522 0.012245 980.0 NK cells
... ... ... ... ... ... ...
2633 2633 TTTCGAACTCTCAT-1 1155 0.021104 3459.0 CD14+ Monocytes
2634 2634 TTTCTACTGAGGCA-1 1227 0.009294 3443.0 B cells
2635 2635 TTTCTACTTCCTCG-1 622 0.021971 1684.0 B cells
2636 2636 TTTGCATGAGAGGC-1 454 0.020548 1022.0 B cells
2637 2637 TTTGCATGCCTCAC-1 724 0.008065 1984.0 CD4 T cells

2638 rows × 6 columns

Here, read() returns an iterator, concat() materializes all rows to memory and to_pandas() returns a Pandas view of the dataframe.

If the dataframe is bigger, we can only select a subset of it before materializing. This will only retrieve the required subset from disk to memory, so very large dataframes can be queried this way. In this example, we will only select the first 10 rows:

[11]:
obs.read((slice(0,10),)).concat().to_pandas()
[11]:
soma_joinid obs_id n_genes percent_mito n_counts louvain
0 0 AAACATACAACCAC-1 781 0.030178 2419.0 CD4 T cells
1 1 AAACATTGAGCTAC-1 1352 0.037936 4903.0 B cells
2 2 AAACATTGATCAGC-1 1131 0.008897 3147.0 CD4 T cells
3 3 AAACCGTGCTTCCG-1 960 0.017431 2639.0 CD14+ Monocytes
4 4 AAACCGTGTATGCG-1 522 0.012245 980.0 NK cells
5 5 AAACGCACTGGTAC-1 782 0.016644 2163.0 CD8 T cells
6 6 AAACGCTGACCAGT-1 783 0.038161 2175.0 CD8 T cells
7 7 AAACGCTGGTTCTT-1 790 0.030973 2260.0 CD8 T cells
8 8 AAACGCTGTAGCCA-1 533 0.011765 1275.0 CD4 T cells
9 9 AAACGCTGTTTCTG-1 550 0.029012 1103.0 FCGR3A+ Monocytes
10 10 AAACTTGAAAAACG-1 1116 0.026316 3914.0 B cells

We can also select a subset of the columns:

[12]:
obs.read((slice(0, 10),), column_names=["obs_id", "n_genes"]).concat().to_pandas()
[12]:
obs_id n_genes
0 AAACATACAACCAC-1 781
1 AAACATTGAGCTAC-1 1352
2 AAACATTGATCAGC-1 1131
3 AAACCGTGCTTCCG-1 960
4 AAACCGTGTATGCG-1 522
5 AAACGCACTGGTAC-1 782
6 AAACGCTGACCAGT-1 783
7 AAACGCTGGTTCTT-1 790
8 AAACGCTGTAGCCA-1 533
9 AAACGCTGTTTCTG-1 550
10 AAACTTGAAAAACG-1 1116

Finally, we can use value_filter to retrieve a filtered subset of rows that match a certain condition.

[13]:
obs.read((slice(None),), value_filter="n_genes > 1500").concat().to_pandas()
[13]:
soma_joinid obs_id n_genes percent_mito n_counts louvain
0 26 AAATCAACCCTATT-1 1545 0.024313 5676.0 CD4 T cells
1 59 AACCTACTGTGAGG-1 1652 0.015839 5682.0 CD14+ Monocytes
2 107 AAGCACTGGTTCTT-1 1717 0.023566 6153.0 B cells
3 109 AAGCCATGAACTGC-1 1877 0.014015 7064.0 Dendritic cells
4 247 ACCCAGCTGTTAGC-1 1547 0.020600 5534.0 CD14+ Monocytes
... ... ... ... ... ... ...
70 2508 TTACTCGACGCAAT-1 1603 0.024851 5030.0 Dendritic cells
71 2530 TTATGGCTTATGGC-1 1783 0.022064 6164.0 Dendritic cells
72 2597 TTGAGGACTACGCA-1 1794 0.024440 6342.0 Dendritic cells
73 2623 TTTAGCTGTACTCT-1 1567 0.021160 5671.0 Dendritic cells
74 2632 TTTCGAACACCTGA-1 1544 0.013019 4455.0 Dendritic cells

75 rows × 6 columns

Collection

A Collection is a persistent container of named SOMA objects, stored as a mapping of string keys and SOMA object values.

The ms member in an Experiment is implemented as a Collection. Let’s take a look:

[14]:
experiment.ms
[14]:
<Collection 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms' (open for 'r') (2 items)
    'RNA': 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/RNA' (unopened)
    'raw': 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/raw' (unopened)>

In this case, we have two members: raw and test_exp_name. They can be accessed as they were dict members:

[15]:
experiment.ms["raw"]
[15]:
<Measurement 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/raw' (open for 'r') (2 items)
    'X': 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/raw/X' (unopened)
    'var': 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/raw/var' (unopened)>

DenseNDArray

A DenseNDArray is a dense, N-dimensional array, with offset (zero-based) integer indexing on each dimension.

DenseNDArray has a user-defined schema, which includes: - the element type, expressed as an Arrow type, indicating the type of data contained within the array, and - the shape of the array, i.e., the number of dimensions and the length of each dimension

In a SOMA single cell experiment, the cell by gene matrix X is typically represented either by DenseNDArray or SparseNDArray. Let’s take a look at our example:

[16]:
X = experiment["ms"]["RNA"].X
X
[16]:
<Collection 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/RNA/X' (open for 'r') (1 item)
    'data': 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/RNA/X/data' (unopened)>

Within the experiment, X is a Collection and the data can be accessed using ["data"]:

[17]:
X = X["data"]
X
[17]:
<DenseNDArray 'file:///var/folders/7l/_wsjyk5d4p3dz3kbz7wxn7t00000gn/T/tmp_hz2hc6p/ms/RNA/X/data' (open for 'r')>

We can inspect the DenseNDArray and get useful information by using .schema:

[18]:
X.schema
[18]:
soma_dim_0: int64 not null
soma_dim_1: int64 not null
soma_data: float not null

In this case, we see there are two dimensions and the data is of type float.

As with with domain for obs, this has a shape: the boundary within which data can be read or written. This may be resizable later as we’ll see in the notebook on TileDB-SOMA’s append mode.

[19]:
X.shape
[19]:
(2638, 1838)

Similarly to DataFrame, when opening a DenseNDArray only metadata is fetched, and the array isn’t fetched into memory.

We can convert the matrix into a pyarrow.Tensor using .read():

[21]:
X.read()
[21]:
<pyarrow.Tensor>
type: float
shape: (2638, 1838)
strides: (7352, 4)

From here, we can convert it further to a numpy.ndarray:

[22]:
X.read().to_numpy()
[22]:
array([[-0.17146951, -0.28081203, -0.04667679, ..., -0.09826884,
        -0.2090951 , -0.5312034 ],
       [-0.21458222, -0.37265295, -0.05480444, ..., -0.26684406,
        -0.31314576, -0.5966544 ],
       [-0.37688747, -0.2950843 , -0.0575275 , ..., -0.15865596,
        -0.17087643,  1.379     ],
       ...,
       [-0.2070895 , -0.250464  , -0.046397  , ..., -0.05114426,
        -0.16106427,  2.0414972 ],
       [-0.19032837, -0.2263336 , -0.04399938, ..., -0.00591773,
        -0.13521303, -0.48211113],
       [-0.33378917, -0.2535875 , -0.05271563, ..., -0.07842438,
        -0.13032717, -0.4713379 ]], dtype=float32)

This will only work on small matrices, since a numpy array needs to be in memory.

We can retrieve a subset of the matrix passing coordinates to .read(). Here we’re only retrieving the first 10 rows of the matrix:

[23]:
sliced_X = X.read((slice(0,9),)).to_numpy()
sliced_X
[23]:
array([[-0.17146951, -0.28081203, -0.04667679, ..., -0.09826884,
        -0.2090951 , -0.5312034 ],
       [-0.21458222, -0.37265295, -0.05480444, ..., -0.26684406,
        -0.31314576, -0.5966544 ],
       [-0.37688747, -0.2950843 , -0.0575275 , ..., -0.15865596,
        -0.17087643,  1.379     ],
       ...,
       [-0.15813293, -0.27562705, -0.04569191, ..., -0.08687588,
        -0.2062048 ,  1.6869122 ],
       [ 4.861763  , -0.23054866, -0.04826924, ..., -0.02755091,
        -0.11788268, -0.4664504 ],
       [-0.12453113, -0.23373608, -0.04131226, ..., -0.00758654,
        -0.16255915, -0.50339466]], dtype=float32)
[24]:
sliced_X.shape
[24]:
(10, 1838)

Note that DenseNDArray is always indexed, on each dimension, using zero-based integers. If this dimension matches any other object in the experiment, the soma_joinid column can be used to retrieve the correct slice.

In the following example, we will get the values of X for the gene tagged as ICOSLG. This involves reading the var DataFrame using a value_filter, retrieving the soma_joinid for the gene and passing it as coordinate to X.read:

[25]:
var = experiment.ms["RNA"].var
idx = var.read(value_filter="var_id == 'ICOSLG'").concat()["soma_joinid"].to_numpy()

X.read((None, int(idx[0]))).to_numpy()
[25]:
array([[-0.12167774],
       [-0.05866209],
       [-0.07043106],
       ...,
       [-0.1320983 ],
       [-0.14978862],
       [-0.10383061]], dtype=float32)

SparseNDArray

A SparseNDArray is a sparse, N-dimensional array, with offset (zero-based) integer indexing on each dimension. SparseNDArray has a user-defined schema, which includes: - the element type, expressed as an Arrow type, indicating the type of data contained within the array, and - the shape of the array, i.e., the number of dimensions and the length of each dimension

A SparseNDArray is functionally similar to a DenseNDArray, except that only elements that have a nonzero value are actually stored. Elements that are not explicitly stored are assumed to be zeros.

As an example, we will load a version of pbmc3k that has been generated using a SparseNDArray:

[26]:
import tarfile
import tempfile

sparse_uri = tempfile.mktemp()
with tarfile.open("data/pbmc3k-sparse.tgz") as handle:
    handle.extractall(sparse_uri)
experiment = tiledbsoma.Experiment.open(sparse_uri)

Let’s take a look at the schema:

[27]:
X = experiment.ms["RNA"].X["data"]
X.schema
[27]:
soma_dim_0: int64 not null
soma_dim_1: int64 not null
soma_data: float not null

This is the same as the DenseNDArray version, which makes sense since it’s still a 2-dimensional matrix with float data.

Let’s look at the shape:

[28]:
X.shape
[28]:
(2638, 1838)

This too has a shape: the boundary within which data can be read or written. This can be resized later as we’ll see in the notebook on TileDB-SOMA’s append mode.

We can get the number of nonzero elements by calling .nnz:

[29]:
X.nnz
[29]:
4848644

In order to work with a SparseNDArray, we call .read():

[30]:
X.read()
[30]:
<tiledbsoma._sparse_nd_array.SparseNDArrayRead at 0x11e824f10>

This returns a SparseNDArrayRead that can be used for getting iterators. For instance, we can do:

[31]:
tensor = X.read().coos().concat()

This returns an Arrow Tensor that can be used to access the array, or convert it further to different formats. For instance:

[32]:
tensor.to_scipy()
[32]:
<COOrdinate sparse matrix of dtype 'float32'
        with 4848644 stored elements and shape (2638, 1838)>

can be used to transform it to a SciPy coo_matrix.

Similarly to DenseNDArrays, we can call .read() with a slice to only obtain a subset of the matrix. As an example:

[33]:
sliced_X = X.read((slice(0,9),)).coos().concat().to_scipy()
sliced_X
[33]:
<COOrdinate sparse matrix of dtype 'float32'
        with 18380 stored elements and shape (2638, 1838)>

Let’s verify that the slice is correct. To do that, we can call nonzero() on the scipy.sparse.coo_matrix to obtain the coordinates of the nonzero items, and look at the coordinates over the first dimension:

[34]:
sliced_X.nonzero()[0]
[34]:
array([0, 0, 0, ..., 9, 9, 9], dtype=int32)
[ ]: