tiledbsoma.io.from_h5ad¶
- tiledbsoma.io.from_h5ad(experiment_uri: str, input_path: str | ~pathlib.Path, measurement_name: str, *, context: ~tiledbsoma.options._soma_tiledb_context.SOMATileDBContext | None = None, platform_config: ~typing.Dict[str, ~typing.Mapping[str, ~typing.Any]] | object | None = None, obs_id_name: str = 'obs_id', var_id_name: str = 'var_id', X_layer_name: str = 'data', raw_X_layer_name: str = 'data', ingest_mode: ~typing.Literal['write', 'schema_only', 'resume'] = 'write', use_relative_uri: bool | None = None, X_kind: ~typing.Type[~tiledbsoma._sparse_nd_array.SparseNDArray] | ~typing.Type[~tiledbsoma._dense_nd_array.DenseNDArray] = <class 'tiledbsoma._sparse_nd_array.SparseNDArray'>, registration_mapping: ~tiledbsoma.io._registration.ambient_label_mappings.ExperimentAmbientLabelMapping | None = None, uns_keys: ~typing.Sequence[str] | None = None, additional_metadata: ~typing.Dict[str, bytes | float | int | str] | None = None) str ¶
Reads an
.h5ad
file and writes it to anExperiment
.Measurement data is stored in a
Measurement
in the experiment’sms
field, with the key provided bymeasurement_name
. Data elements are available at the standard fields (var
,X
, etc.). Unstructured data fromuns
is partially supported (structured arrays and non-numeric NDArrays are skipped), and is available at the measurement’suns
key (i.e., atyour_experiment.ms[measurement_name]["uns"]
).- Parameters:
experiment_uri – The experiment to create or update.
input_path – A path to an input H5AD file.
measurement_name – The name of the measurement to store data in.
context – Optional
SOMATileDBContext
containing storage parameters, etc.platform_config – Platform-specific options used to create this array, provided in the form
{"tiledb": {"create": {"sparse_nd_array_dim_zstd_level": 7}}}
.obs_id_name/var_id_name –
Which AnnData
obs
andvar
columns, respectively, to use for append mode.Values of this column will be used to decide which obs/var rows in appended inputs are distinct from the ones already stored, for the assignment of
soma_joinid
. If this column exists in the input data, as a named index or a non-index column name, it will be used. If this column doesn’t exist in the input data, and if the index is nameless or namedindex
, that index will be given this name when written to the SOMA experiment’sobs
/var
.NOTE: it is not necessary for this column to be the index-column name in the input AnnData object’s
obs
/var
.X_layer_name – SOMA array name for the AnnData’s
X
matrix.raw_X_layer_name – SOMA array name for the AnnData’s
raw/X
matrix.ingest_mode –
The ingestion type to perform:
write
: Writes all data, creating new layers if the SOMA already exists.resume
: Adds data to an existing SOMA, skipping writing data that was previously written. Useful for continuing after a partial or interrupted ingestion operation.schema_only
: Creates groups and the array schema, without writing any data to the array. Useful to prepare for appending multiple H5AD files to a single SOMA.
X_kind – Which type of matrix is used to store dense X data from the H5AD file:
DenseNDArray
orSparseNDArray
.registration_mapping –
Does not need to be supplied when ingesting a single H5AD/AnnData object into a single
Experiment
. When multiple inputs are to be ingested into a single experiment, there are two steps. First:import tiledbsoma.io rd = tiledbsoma.io.register_h5ads( experiment_uri, h5ad_file_names, measurement_name="RNA", obs_field_name="obs_id", var_field_name="var_id", context=context, )
Once that’s been done, the data ingests per se may be done in any order, or in parallel, via for each
h5ad_file_name
:tiledbsoma.io.from_h5ad( experiment_uri, h5ad_file_name, measurement_name="RNA", ingest_mode="write", registration_mapping=rd, )
uns_keys – Only ingest the specified top-level
uns
keys. The default is to ingest them all. Useuns_keys=[]
to not ingest anyuns
keys.additional_metadata –
Optional metadata to add to the
Experiment
and all descendents. This is a coarse-grained mechanism for setting key-value pairs on all SOMA objects in anExperiment
hierarchy. Metadata for particular objects is more commonly set like:with soma.open(uri, 'w') as exp: exp.metadata.update({"aaa": "BBB"}) exp.obs.metadata.update({"ccc": 123})
- Returns:
The URI of the newly created experiment.
Lifecycle
Maturing.