tiledbsoma.io.append_X¶
- tiledbsoma.io.append_X(exp: ~tiledbsoma._experiment.Experiment, new_X: ~numpy.ndarray | ~h5py._hl.dataset.Dataset | ~scipy.sparse._csr.csr_matrix | ~scipy.sparse._csc.csc_matrix | ~anndata.abc.CSCDataset | ~anndata.abc.CSRDataset, measurement_name: str, X_layer_name: str, obs_ids: ~typing.Sequence[str], var_ids: ~typing.Sequence[str], *, registration_mapping: ~tiledbsoma.io._registration.ambient_label_mappings.ExperimentAmbientLabelMapping, X_kind: ~typing.Type[~tiledbsoma._sparse_nd_array.SparseNDArray] | ~typing.Type[~tiledbsoma._dense_nd_array.DenseNDArray] = <class 'tiledbsoma._sparse_nd_array.SparseNDArray'>, context: ~tiledbsoma.options._soma_tiledb_context.SOMATileDBContext | None = None, platform_config: ~typing.Dict[str, ~typing.Mapping[str, ~typing.Any]] | object | None = None) str ¶
Appends new data to an existing
X
matrix. Nominally to be used in conjunction withupdate_obs
andupdate_var
, as an itemized alternative to doingfrom_anndata
with a registration mapping supplied.Example:
rd = tiledbsoma.io.register_anndatas( exp_uri, [new_anndata], measurement_name="RNA", obs_field_name="obs_id", var_field_name="var_id", ) with tiledbsoma.Experiment.open(exp_uri) as exp: tiledbsoma.io.append_X( exp, new_X=adata.X, measurement_name=measurement_name, X_layer_name=X_layer_name, obs_ids=list(new_anndata.obs.index), var_ids=list(new_anndata.var.index), registration_mapping=rd, )
Lifecycle
Maturing.