tiledbsoma.SparseNDArray.read¶
- SparseNDArray.read(coords: Sequence[None | int | Slice[int] | Sequence[int] | ndarray[tuple[int, ...], dtype[integer]] | IntegerArray | ChunkedArray] = (), *, result_order: ResultOrder | Literal['auto', 'row-major', 'column-major'] = ResultOrder.AUTO, batch_size: BatchSize = BatchSize(count=None, bytes=None), partitions: ReadPartitions | None = None, platform_config: Dict[str, Mapping[str, Any]] | object | None = None) SparseNDArrayRead¶
Reads a user-defined slice of the
SparseNDArray.- Parameters:
coords – A per-dimension
Sequenceof scalar, slice, sequence of scalar or Arrow IntegerArray <https://arrow.apache.org/docs/python/generated/pyarrow.IntegerArray.html> values defining the region to read.- Returns:
A
SparseNDArrayReadto access result iterators in various formats.- Raises:
SOMAError – If the object is not open for reading.
Lifecycle
Maturing.
Notes
Acceptable ways to index:
A sequence of coordinates is accepted, one per dimension.
Sequence length must be <= number of dimensions.
If the sequence contains missing coordinates (length < number of dimensions), then
slice(None)– i.e. no constraint – is assumed for the remaining dimensions.Per-dimension, explicitly specified coordinates can be one of: None, a value, a list/
numpy.ndarray/pyarrow.Array/etc of values, a slice, etc.Slices are doubly inclusive:
slice(2,4)means [2,3,4] not [2,3]. Slice steps can only be +1. Slices can beslice(None), meaning select all in that dimension, and may be half-specified, e.g.slice(2,None)orslice(None,4).Negative indexing is unsupported.