tiledbsoma.io.spatial.from_visium¶
- tiledbsoma.io.spatial.from_visium(experiment_uri: str, input_path: ~pathlib.Path | ~tiledbsoma.io.spatial.ingest.VisiumPaths, measurement_name: str, scene_name: str, *, context: ~tiledbsoma.options._soma_tiledb_context.SOMATileDBContext | None = None, platform_config: ~typing.Dict[str, ~typing.Mapping[str, ~typing.Any]] | object | None = None, X_layer_name: str = 'data', raw_X_layer_name: str = 'data', image_name: str = 'tissue', image_channel_first: bool = True, ingest_mode: ~typing.Literal['write', 'schema_only', 'resume'] = 'write', use_relative_uri: bool | None = None, X_kind: type[~tiledbsoma._sparse_nd_array.SparseNDArray] | type[~tiledbsoma._dense_nd_array.DenseNDArray] = <class 'tiledbsoma._sparse_nd_array.SparseNDArray'>, registration_mapping: ~tiledbsoma.io._registration.ambient_label_mappings.ExperimentAmbientLabelMapping | None = None, additional_metadata: ~typing.Dict[str, bytes | float | int | str] | None = None, use_raw_counts: bool = False, write_obs_spatial_presence: bool = True, write_var_spatial_presence: bool = False) str ¶
Reads a 10x Visium dataset and writes it to an
Experiment
.This function is for ingesting Visium data for prototyping and testing the proposed spatial design.
WARNING: This was only tested for Space Ranger version 2 output.
- Parameters:
experiment_uri – The experiment to create or update.
input_path – A path to the base directory storing SpaceRanger output or a
VisiumPaths
object.measurement_name – The name of the measurement to store data in.
context – Optional
SOMATileDBContext
containing storage parameters, etc.platform_config – Platform-specific options used to specify TileDB options when creating and writing to SOMA objects.
X_layer_name – SOMA array name for the AnnData’s
X
matrix.raw_X_layer_name – SOMA array name for the AnnData’s
raw/X
matrix.image_name – SOMA multiscale image name for the multiscale image of the Space Ranger output images.
image_channel_first – If
True
, the image is ingested in channel-first format. Otherwise, it is ingested into channel-last format. Defaults toTrue
.ingest_mode –
The ingestion type to perform: -
write
: Writes all data, creating new layers if the SOMA already exists. -resume
: Adds data to an existing SOMA, skipping writing datathat was previously written. Useful for continuing after a partial or interrupted ingestion operation.
schema_only
: Creates groups and the array schema, without writing any data to the array. Useful to prepare for appending multiple H5AD files to a single SOMA.
X_kind – Which type of matrix is used to store dense X data from the H5AD file:
DenseNDArray
orSparseNDArray
.registration_mapping –
Mapping for
soma_joinid
when ingesting multiple Visium datasets or ingesting into an existingExperiment
. This is done by first registering the Visium dataset(s):import tiledbsoma.io.spatial rd = tiledbsoma.io.register_h5ads( experiment_uri, visium_paths, measurement_name="RNA", context=context, )
Once they are registered, the Visium datasets can be ingested in any order using:
tiledbsoma.io.from_visium( experiment_uri, visium_path, measurement_name="RNA", ingest_mode="write", registration_mapping=rd, )
additional_metadata –
Optional metadata to add to the
Experiment
and all descendents. This is a coarse-grained mechanism for setting key-value pairs on all SOMA objects in anExperiment
hierarchy. Metadata for particular objects is more commonly set like:with soma.open(uri, 'w') as exp: exp.metadata.update({"aaa": "BBB"}) exp.obs.metadata.update({"ccc": 123})
use_raw_counts – If
True
ingest the raw gene expression data, otherwise use the filtered gene expression data. Only used ifinput_path
is not aVisiumPaths
object. Defaults toFalse
.write_obs_spatial_presence – If
True
create and write data to theobs
presence matrix. Defaults toTrue
.write_var_spatial_presence – If
True
create and write data to thevar
presence matrix. Defaults toFalse
.
- Returns:
The URI of the newly created experiment.
Lifecycle
Experimental